دائما ما يعتبر الكثيرين أن كيفية إثبات علاقات الزوايا باستخدام خصائص الزوايا المتطابقة والتكميلية والتكميلية من الأمور الصعبة، لذا لابد من تعلم المفاهيم وتطبيقها على مشاكل الممارسة، لأن إثبات العلاقات بين الزوايا تجعلك تتساءل هل الوصول إلى البراهين أحيانًا يكون من الأمور الصعبة المليئة بالتعقيد؟
عند فهم تقسيم العلاقة بين الزوايا والبدء ببعض العلاقات الأساسية، وخصائص الزوايا المتطابقة، يمكن أن يساعد ذلك على فهم هذه القواعد في بناء أساس لـ استخدام نظريات وخصائص أكثر تعقيدًا. [1]
اثبات العلاقات بين الزوايا
خصائص الزوايا المتطابقة
الزوايا المتطابقة
هي زوايا لها نفس القياس، فعلى سبيل المثال ، إذا كانت لديك زاويتان 62 درجة ، فهما متطابقان، فإن الزوايا المتطابقة لها خصائص مختلفة يمكن أن تساعدك في عمل البراهين معهم:
-
تنص
الخاصية الانعكاسية
على أن الزاوية مطابقة لنفسها، وهذا أمر محير إذا كنت تفكر فيه ، ولكن لا يوجد معنى سري ؛ ولكن هناك بالفعل قاعدة في الهندسة تقول حرفياً أن شيئًا ما يساوي نفسه.
-
تنص
الخاصية المتماثلة
على أنه إذا كانت الزاوية أ تساوي الزاوية ب ، فإن الزاوية ب تساوي الزاوية أ، وتسمى هذه الخاصية متناظرة لأن الكميات على كلا جانبي علامة التساوي متساوية ، وبالتالي فإن المعادلة متماثلة.
-
يمكنك قلب A و B من جانب إلى آخر ، ولا يهم، وتنص
الخاصية المتعدية
على أنه إذا كانت الزاوية A تساوي الزاوية B ، وإذا كانت الزاوية B تساوي الزاوية C ، فإن الزاوية A تساوي الزاوية C.
الزوايا التكميلية والمكملة
هناك بعض النظريات حول الزوايا التكميلية والمكملة، وذلك من خلال أن مجموع الزوايا المكملة يصل إلى 90 درجة ، أو زاوية قائمة، ومجموع الزوايا المكملة 180 درجة ، وهو خط مستقيم.
وتنص نظرية التكميل على أن
الزوايا المكملة
لنفس الزاوية متطابقة مع بعضها البعض، وكمثال على ذلك فإن الزاوية A والزاوية B كلاهما مكملان لـ 64 درجة، إذن ، يجب أن تساوي الزاوية (أ) والزاوية (ب) 26 درجة.
من هذا ، يمكننا القول إن الزاوية A والزاوية B متساويان، ويعمل هذا حتى لو لم نكن نعرف قيم أي من الزوايا، حتى إذا كنا لا نعرف ما هو x ، فإننا نعلم أن كلا من A و B يساوي 90 – x ، لذلك يجب أن يكونا متساويين.
التعليقات مغلقة.